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Abstract

The purpose of this paper is to explain some aspects of including a marginal line loss ap-
proximation in the DCOPF. The DCOPF optimizes electric generator dispatch using simplified
power flow physics. Since the standard assumptions in the DCOPF include a lossless network,
a number of modifications have to be added to the model. Calculating marginal losses allows
the DCOPF to optimize the location of power generation, so that generators that are closer
to demand centers are relatively cheaper than remote generation. The problem formulations
discussed in this paper will simplify many aspects of practical electric dispatch implementations
in use today, but will include su�cient detail to demonstrate a few points with regard to the
handling of losses.

First, we look at the mathematics that go into approximating marginal line losses in the
DCOPF and how di↵erent methods e↵ect LMP pricing. The methodology explained in this
paper begins with a feasible AC power flow solution, called the base point or operating point.
This base point includes information about network power flows and bus voltages that a↵ect
the calculation for marginal line losses. We show that when these aspects are ignored, prices no
longer reflect the network’s physics.

Various DCOPF model formulations also a↵ect the accuracy of the optimal solution’s physics.
Selecting a reference bus simplifies calculations in the DCOPF. We compare a few common
formulations of the DCOPF and show that one of these formulations can distort flows and results
in a violation of Kircho↵’s Current Law at the reference bus. Correcting this formulation results
in a model with optimal solutions that are independent of the reference bus.

Additionally, we propose a novel method for updating the loss approximation without solving
for a new base point. If the update procedure converges, then it gives a solution to a nonlinear
problem. However this problem is also nonconvex, and therefore the update procedure is not
guaranteed to converge. Results show good convergence properties on some networks.
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1 Introduction and Background

All independent system operators (ISOs) in the US implement marginal cost pricing [1, 2, 3, 4, 5, 6,
7] in which market participants pay or receive the cost of delivering the next unit of power at their
node in the network. The marginal cost pricing approach is economically e�cient in a competitive
market because the price signal to each node reflects the increase in system cost required to serve
the next unit of demand. Marginal loss prices are a component of marginal pricing and reflect the
portion of the change in cost that is due to a change in system line losses. The locational marginal
price (LMP) is the primary economic signal in ISO markets and decomposes into the marginal loss
component, marginal congestion component, and marginal energy component.
Approximations within the market dispatch model di↵er from the network physics. The approx-

imations result in prices that do not reflect physical measurements, which can cause problems in
the market [8, 9, 10, 11]. We will focus on making the modeling approximation as close as possible
to the actual physics because this will ensure that prices accurately reflect the marginal cost of
electricity.
The magnitude of loss payments also justifies a closer look at current practices. In PJM in 2014,

total marginal loss costs were $1.5 billion, compared to $1.9 billion in total congestion costs [12].
The general name for the dispatch problem that ISOs face is the optimal power flow (OPF).

The AC Optimal Power Flow (ACOPF) takes account of alternating current’s mathematical com-
plexities. However, the ACOPF is a large scale, nonlinear, nonconvex optimization problem and
requires more time to solve using existing methods than current practice allows [13]. Dispatch
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models must solve quickly in order to be practical in day-ahead and real-time markets (DAM and
RTM), and today’s ISOs solve linear programming models for this reason. The DCOPF is named
a bit awkwardly because it is not modeling “direct current” power, but is really a linearization and
approximation of the ACOPF [14].
The DCOPF is typically implemented with linear power transfer or generation shift factors which

relate power generation and demand to power transfers across transmission lines in the network.
We call this implementation the distribution factor model. The sensitivities in the model can be
linearized inputs from a feasible AC power flow. A loss approximation is also incorporated into
the market software’s economic dispatch. Typically, the approximation is based on historical ratios
or an AC power flow solution that predict load flow in the time period being dispatched. Since
losses are approximately quadratic, marginal losses are about twice the average losses, so excess
loss revenues are collected and returned to demand based on load ratios in both the DAM and
RTM.
An alternative to the distribution model approach is called the “B⇥” model and also results in a

linear model. However, the B⇥ model takes a few orders of magnitude longer to solve and therefore
is not typically used for clearing electricity markets. This paper will focus on the distribution factor
model version of the DCOPF.
It is important to precisely study the loss approximation so that the market optimization will

model the actual network physics as closely as possible. For example, poor loss modeling can be
exploited by financial market participants who will place bids to correct for a poor loss approxima-
tion. Poor loss estimation can be caused from load forecast bias or can be inherent to the power
flow and loss estimate methodology, and a consistent over or under-estimation between day ahead
and real time marginal loss components is all that is needed for financial market participants to
place bids based on the mis-estimation. These bids can correct the mis-estimation by aiding price
convergence, but this would be unnecessary if the market cleared o↵ of a better loss approximation.
A better solution may be for the market software to have a good loss approximation from the
outset. MISO changed its loss modeling to limit such behavior, as prompted by its market monitor
[8].
One result of implementing marginal loss pricing is that ISOs will collect more revenue for line

losses than what is remunerated to generators. The over-collection must be repaid with a rebate to
market participants [9, 10]. The methodolgy to determine the rebate can have significant e↵ects.
For example, a 2010 CAISO study showed that two alternative loss allocation methodologies would
change regional allocations by $18.8 million and $13.8 million compared to the filed methodology
[15]. Similarly, marginal loss rebate policies can also be exploited by market participants [11, 16].
In addition to accurate prices, allocation methodologies are also potentially important but will not
be discussed further in this paper.
Marginal loss calculations in the DCOPF are sensitive to many things, including the input data,

the approximation approach, and the selection of a reference bus or slack bus. We use the terms
reference bus and slack bus interchangeably. Input data may include physical properties of the
transmission network and perhaps voltage angles and magnitudes. For example, a feasible AC
power flow can be used to supply the input data that defines the base point from which the
dispatch model optimizes.
The distribution factor model requires the selection of a reference bus which is assumed to be the

source (or sink) of all power consumed (or produced). Power flows to and from the reference bus
are “summed” using the superposition principle so that the e↵ect of the reference bus gets canceled
out in a lossless model. Although the reference bus simplifies the mathematics, its inclusion in the
model can distort power flows when line losses are considered.
Loss factors define the sensitivity of system losses to power injections or withdrawals at a specified
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bus on the network. They can be positive or negative. When the loss factor at a bus is positive,
a small injection at that node will result in a small increase in system losses. Loads pay a lower
price because system losses are decreased by a small increase in demand. Generators receive a
lower price because system losses are increased by a small increase in production. On the other
hand, when the loss factor at a bus is negative, a small injection will result in a small decrease in
system losses. Loads pay a higher price because system losses are increased by a small increase in
demand. Generators receive a higher price because system losses are decreased by a small increase
in production. The change in system losses is relative to delivering power to the reference bus. By
definition, the loss factor at the reference bus is zero.
The rest of the paper is as follows. Section 1.1 will provide a more detailed overview of how

marginal losses are estimated in each of the US ISOs, and an academic literature review is included
in Section 1.2. Section 1.3 will describe the conventions, parameters, sets and variables to be used
in the proceeding sections. Section 2.1 derives the classical DC power flow approximation and is
followed in Section 2.2 by a similar derivation for a linearized approximation of line losses based on
marginal analysis of the AC power flow equations. Section 2.3 gives a simpler alternative for line
losses based on a quadratic approximation, and Section 3 formulates the linear DCOPF model that
is commonly used in practice. Section 3.1 gives a di↵erent formulation of the DCOPF with losses
that is commonly used but results in a violation of Kircho↵’s Current Law. An example problem is
presented in Section 4 to compare the LMPs that result from three di↵erent DCOPF formulations.
Section 5 presents a method for updating loss factors and demonstrates the method on a selection
of test cases. Section 6 concludes the paper and is followed by references.

1.1 Current Practices

Typical dispatch models assume that losses are linearized around a base point solution. This base
point may be taken from the state estimator, AC power flow analysis, or the results of a dispatch
optimization. The section describes each ISO’s processes for estimating losses.
California ISO (CAISO) determines marginal loss factors by linearizing around an AC power

flow solution base point [17]. The AC power flow is calculated throughout iterations of the Security
Constrained Unit Commitment (SCUC) process. System losses are calculated at after each AC
power flow. In addition, loss sensitivities and shift factors are calculated from linearizing around
the AC power flow solution then fed into the SCUC and SCED optimization models. In the
Integrated Forward Market (IFM) piece of CAISO’s DAM, SCUC uses generation and demand
bids to determine power flows. The IFM is followed by Reliability Unit Commitment (RUC) which
uses generation bids and a load forecast.
Although Electric Reliability Council of Texas (ERCOT) uses LMPs, the LMPs only include

components for energy and congestion [18]. In the absence of transmission congestion, LMPs are
uniform. Losses are added during the settlement process and are based on linear interpolation or
extrapolation of forecasted on-peak and o↵-peak transmission loss factors [19].
ISO-New England (ISO-NE) uses loss factors to calculate LMPs every hour in the DAM and every

five minutes in the RTM. The state estimator provides information regarding transmission losses
for both Day-Ahead and Real-Time LMPs. ISO-NE bases its DAM on the expected transmission
configuration and the bids and o↵ers from market participants. The RTM clears o↵ information
from the state estimator [20].
In Midcontinent ISO (MISO), the Energy Management System (EMS) state estimator calculates

the total system losses using a combination of an AC power flow and a statistical model based
on system measurements [21]. In real time, loss factors can be calculated directly from the state
estimator, and MISO monitors the calculated real-time loss factors to make sure these are adequate
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for settlement purposes. For day ahead, MISO uses recent solutions from the state estimator with
similar load and wind characteristics as day ahead interval.
The New York ISO (NYISO) uses marginal loss factors that reflect expected scheduled and

unscheduled power flows on the network [22]. In the DAM, expected unscheduled power flows are
generally determined using a 30-day moving average of on and o↵-peak flows. Unscheduled power
flows in the RTM are based on current power flows. NYISO calculates LMPs multiple times for
each time period. The first set of LMPs settle the DAM and are taken from unit commitment and
dispatch optimization. The final LMPs settle the RTM and are taken from a dispatch optimization.
Prior to implementing marginal loss pricing, PJM used generic on-peak and o↵-peak loss factors,

adding 3% and 2.5% to on and o↵ peak demands, respectively. Because loss factors were not part
of the economic dispatch, the result was less than optimal [23]. PJM now calculates loss factors
in the DAM and RTM based on transmission characteristics, generation levels and load levels, and
state estimator data [6].
The Southwest Power Pool (SPP) operates its DAM and RTM with marginal loss pricing. In

the RTM, losses are estimated using the current state estimator solution. SPP estimates future
operating conditions and performs a power flow study to calculate marginal losses for the DAM [7].
The loss factor methodologies of each ISO are summarized in Table 1.1.

1.2 Literature Review

The DCOPF has long been of interest to academic research, and the following section will review a
small sample of academic work on the subject. DCOPF is a subset of the more generic optimal power
flow (OPF) problem, which is a large-scale, nonlinear, nonconvex problem that is exceptionally
di�cult to solve. This problem was first formalized as an optimization problem by Carpentier in
1962 [24]. This sparked interest in formulations for electricity markets [25].
Many surveys are out there which give a much more comprehensive review of the various methods

for solving OPF problems [26, 27, 28, 29, 30, 31]. The surveys serve a dual purpose to anyone inter-
ested in mathematical optimization because of their close tracking of mathematical programming
developments. In particular, linear programming, quadratic programming, generalized reduced gra-
dient, Newton’s method, and conjugate gradient were all common approaches through the 1980s
and 1990s. More recently, semidefinite programming [32, 33, 34, 35] and second order conic pro-
gramming [36] have shown promising results. Many of the recent advances focus on solving the
ACOPF problem [13, 37], but the linear DCOPF problem remains the standard problem for electric
dispatch applications [38, 39].
Computational performance has always been the main advantage of using linear OPF models,

as well as its easy integration with standard economic theory [25]. The linear OPF was first
formulated and solved by Wells in 1968 [40], which reports solution times of a few minutes on
power networks consisting of 100 nodes. This work was put into a more familiar form in the late
1970s thanks to the pioneering work of Stott [41]. The relative success of linearized OPFs was noted
in [42], which encouraged further use of the DCOPF because of its computational advantages and
relative accuracy. Reference [14] provides some of the most detailed analysis of current DCOPF
approximation techniques and pays particular interest to the implications of the OPF’s accuracy
in electricity markets, which is further studied in [38, 39, 43].
Various new approaches to the DCOPF remain an active area of research. The interested reader

can go to reference [44] for a similar ACOPF linearization approach as will be taken in this paper.
Iterative approaches to the DCOPF in [45, 46] have shown some success. The DCOPF is certainly
not restricted to real time dispatch, as it is also an important aspect in transmission expansion
planning [47, 48] among many other applications that are not enunmerated here. Studies continue
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ISO Used in
Dispatch

Base Point (DAM) Base Point (RTM) Update Frequency

CAISO Yes SCUC AC power flow
with generation and
demand bids or load
forecast

SCUC AC power flow
with initial data from
state estimator

Every hour in DAM
and every fifteen min-
utes in RTM

ERCOT No Interpolation during
settlement process

Interpolation during
settlement process

N/A

ISO-NE Yes State estimator solu-
tion with estimated
future operating con-
ditions

Current state estima-
tor solution

Every hour in DAM
and every five minutes
in RTM

MISO Yes Recent state estima-
tor solutions with
similar demand and
wind characteristics

Current state estima-
tor solution

Monitored in real time,
with updates possible
up to every minute

NYISO Yes SCUC AC power flow
using a 30-day mov-
ing average of on and
o↵ peak power flows

SCUC AC power flow During intermediate
dispatch runs between
DAM clearing and
RTM clearing

PJM Yes State estimator solu-
tion with estimated
future operating con-
ditions

Current state estima-
tor solution

Every hour in DAM
and every five minutes
in RTM

SPP Yes AC power flow after
RUC with estimated
future operating con-
ditions

Current state estima-
tor solution

Every hour in DAM
and every five minutes
in RTM

Table 1.1: ISO loss factor methodologies.

to show that the DCOPF is a close approximation of MW power flows[38, 39], despite the exclusion
of important reactive power and voltage considerations [49, 50].
LMP pricing is one of the most important DCOPF applications. A common problem with many

DCOPF formulations is the solution’s dependence on the selection of a reference bus. Three-node
examples are provided in [51] which compare the LMPs from various formulations. The formulation
used in this paper was proven to give results that are independent of the reference bus through the
use of loss distribution factors used in the transmission constraint [52]. Fictitious nodal demands
are another method of formulating DCOPF models with the reference bus independence property
[53]. Rapid iterative convergence for these models was demonstrated on small networks in [46, 54].

1.3 Notational Conventions

The following sections will present various equations and optimization problems concerning optimal
power flow. To make this as readable as possible, we will make an honest e↵ort to adhere to the
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following conventions. Unfortunately there are some places where historical precedent supersedes
our best e↵orts.
Scalars, vectors, and matrices will all follow a general convention. Scalars will be lowercase (x),

vectors will be uppercase (X), and matrices will be bolded uppercase (X). Elements of vectors will
be noted with a subscript (xn), and we may also subscript some scalars to denote separate values
(xpn, x

g
n). Vectors are generally column vectors, and may be di↵erentiated using subscripts in some

cases (Xp, Xg). Matrix transpose is denoted by the symbol >.
Parameters and variables are more di�cult to separate by a convention. Instead, this di↵erence

will be noted immediately after the parameter or variable is introduced. They are also listed as
parameters or variables in the nomenclature list at the end of this section for easy reference. Fixed
variables are denoted by an overline (x) and optimal solutions are denoted by an asterisk (x⇤).
Dual variables will use the Greek alphabet, although one exception to this rule is ✓ and �, which
are used for voltage angles.
Sets names are in calligraphic font (N ). We have simplified the notation a bit by making no

distinction between generator and node indices, i.e., the power injection at each node is equal to
the sum of injections from all generators at that node. Therefore, the formulations in this paper
may require some additional bookkeeping to be implemented in an actual optimization program.

Nomenclature

Dual Variables

↵

min

,↵

min

Dual variables to the minimum and maximum generation output constraints.

⇤ Vector of locational marginal prices (LMPs).

� Dual variable to the power balance constraint.

µ Dual variable to the transmission constraint.

� Dual variable to the loss function constraint.

Functions

� Hadamard product.

> Matrix or vector transpose.

c(·) Linear or convex cost function.

Indices

h Iteration index

i, j, n Nodes or bus indices, i, j, n 2 N .

k Transmission line index, k 2 K.

Parameters

`

0 Line loss function constant.

⌘k Loss approximation range translation.
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�k Loss approximation second-order coe�cient.

1 Vector of ones.

A Network incidence matrix.

Bd Diagonal branch susceptance matrix with elements bijk for branch k from node i to j.

B Nodal susceptance matrix.

Gs Diagonal shunt conductance matrix with elements gshi for bus i.

I Identity matrix.

L Marginal loss matrix.

S Marginal branch flow matrix.

T Transmission sensitivity matrix with elements t
(ijk,n) (PTDFs).

� Transformer phase angle change vector with elements �ijk for branch k from node i to
j.

⇠k Loss approximation domain translation.

aijk Tap transformer turns ratio from node i to j on branch k.

bijk Branch susceptance from node i to j on branch k.

gijk Branch conductance from node i to j on branch k.

LF Loss factor vector with elements `fi.

Pd Power demand vector with elements pdi .

P

min

, P

max

Minimum and maximum generator output vectors.

rk Resistance on branch k.

T

max

Transmission branch power flow limit vector.

ui(n) Unit injection equal to 1 if i = n or zero otherwise.

W Weighting vector with elements wi.

xk Reactance on branch k.

Sets

K Set of transmission lines, {1, . . . ,K}.

N Set of nodes or buses, {1, . . . , N}.

Variables

�⇥ Marginal voltage angle vector.

�P Marginal real power injection vector.
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�V Vector of marginal change in voltage magnitude.

�L Marginal line loss vector.

` Total network real power losses.

`k Line losses on branch k.

�⇥ Voltage angle sensitivity matrix.

⇥ Voltage angle vector with elements ✓i for node i.

P Net real power injection vector with elements pi for node i.

Pg Power generation injection vector with elements pgi for generators at node i.

Pt Power flow vector with elements pijk for branch k from node i to j.

V Voltage magnitude vector with elements vi for node i.

y Slack variable for a reference bus withdrawal.

2 Power Flow Derivations

The purpose of this section is to develop an understanding of the DCOPF model used by ISOs.
We formulate the traditional DF model with losses and provide a method to calculate loss factors
as a numerical derivative. We first apply three assumptions to derive the DC power flow approx-
imation from nonlinear AC power flow equations. Then a numerical procedure to calculate loss
factors is provided. This numerical procedure makes use of nonlinear AC power flow equations
and is representative of current practices. The section concludes by presenting an analytic line
loss approximation that is useful for sequential linear programming. The analytic approximation
follows from the same three assumptions used to derive the DC power flow approximation, which
provides an acceptable approximation of AC power flow in most applications. Importantly, this
procedure can be performed quickly because it does not require solving any nonlinear equations.
We begin with the AC real power flow equations for a single branch and network balancing

constraints for each node. Notationally, a branch k 2 K connects nodes i and j 2 N , and power
flow pijk from i to j and pjik from j to i are as follows:

pijk = gijk
v

2

i

a

2

ijk

� vivj

aijk
(gijk cos(✓i � ✓j � �ijk) + bijk sin(✓i � ✓j � �ijk)) , (1)

pjik = gijkv
2

j �
vivj

aijk
(gijk cos(✓j � ✓i + �ijk) + bijk sin(✓j � ✓i + �ijk)) , (2)

where the parameters are the branch conductance gijk, branch susceptance bijk, tap transformer
turns ratio aijk, transformer phase angle change �ijk, and the variables are the voltage magnitude
vi and voltage angle ✓i.
Power flow pijk is assumed to be the power flowing out of node i from line k, then similarly �pjik

is the amount flowing into node j from line k. The amount of power generated minus the amount
consumed at a node must be equal to the amount flowing out of its adjacent transmission lines.
Losses in the shunt conductance, gshi , are also accounted for. We simplify power generation (an
injection) and consumption (a withdrawal) for now using the net injection pi at node i 2 N , which
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by convention is positive for a net injection and negative for a net withdrawal. For real power, the
network balance equations are:

pi =
X

k

pijk + v

2

i g
sh
i , 8i 2 N . (3)

Or, in matrix form:

P = APt +Gs(V � V ), (4)

where A is an (N ⇥K) network incidence equal to 1 for branch a k assumed to flow into node i,
�1 if the branch is assumed to flow out of node i, and 0 if branch k is not connected to node i, Pt

is a vector of transmission flows, Gs is an N ⇥ N diagonal matrix of shunt conductances, V is a
vector of nodal voltage magnitudes, and � is the element-by-element (or Hadamard) product.

2.1 DC Power Flow

Many industry applications rely on DC power flow approximations. DC power flow equations are
preferable in many instances because they are linear and can be solved quickly. Conversely, AC
power flow equations model the system more accurately, but are nonlinear and nonconvex. It can
even be di�cult to find a feasible solution to AC power flow equations in a large scale system such
as one of the main US power grids. Therefore, the common DC power flow approximation makes
three main assumptions:

• Voltage is close to one per unit (p.u.) at all buses,

• Voltage angle di↵erences are small, i.e., sin(✓) ⇡ 0 and cos(✓) ⇡ 1,

• Line resistance is negligible compared to reactance, i.e., rk ⌧ xk and therefore gijk ⌧ bijk.

Under these assumptions, AC power flow equations [13] in polar form will reduce to

pijk = gijk
v

2

i

a

2

ijk

� vivj

aijk
(gijk cos(✓i � ✓j � �ijk) + bijk sin(✓i � ✓j � �ijk))

= gijk � (gijk cos(✓i � ✓j � �ijk) + bijk sin(✓i � ✓j � �ijk))

= gijk � (gijk + bijk(✓i � ✓j � �ijk))

= � 1

xijk
(✓i � ✓j � �ijk).

Or, in matrix form:

Pt = Bd

⇣
A

>⇥+ �
⌘
, (5)

where Bd is a (K ⇥K) diagonal matrix with values �bijk, A is the network incidence matrix, ⇥
is an (N ⇥ 1) vector of nodal voltage angles, and � is a K ⇥ 1 of transformer phase angle changes.
This follows the derivations in reference [55].
To reduce solution time in practice, the transmission constraint (5) can be simplified using power

transfer distribution factors (PTDFs), also called shift factors or generation shift factors. We
use these terms interchangeably. The PTDF is the sensitivity of change in real power flow on a
particular line to the change in power injected at a particular bus. The injection (or withdrawal) is
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assumed to be withdrawn (or injected) at the reference bus. The PTDFs form a K ⇥N sensitivity
matrix T with elements t

(ijk,n).

t

(ijk,n) =
dpijk

dpi

=
d

dpi
(�bijk(✓i � ✓j � �ijk))

= �bijk
✓
d✓i

dpi
� d✓j

dpi

◆
.

It is common to define an N ⇥N nodal susceptance matrix.

B = ABdA
>

Now we introduce an N ⇥N matrix [I�W1

>], whose n

th column pairs a unit injection at node
n with a reference bus withdrawal. I is the identity matrix. Reference bus withdrawals are defined
by a weighting vector W that sums to one. The nth column of matrix �⇥ represents the marginal
change in bus voltage angles corresponding to the injections and withdrawals in the n

th column of
[I�W1

>].

[I�W1

>] = B�⇥.

Then we can construct the PTDF matrix:

T = �BdA
>
�⇥

= �BdA
>
B

�1[I�W1

>]

One problem is that the matrix B is singular and cannot be inverted so easily. In practice, the row
and column corresponding to the reference bus are removed so that the matrix will be invertible.
The PTDF at the reference bus is zero by definition.
This is equivalent to solving the following set of N equations N times:

ui(n)� wi =
X

k

bijk(✓i � ✓j), 8i 2 N , (6)

with n = {1, . . . , N}, where ui(n) is equal to 1 if i = n or zero otherwise, and wi is the i

th element
of the weight vector W .

2.2 Marginal Line Losses

Line losses `k across branch k are equal to the di↵erence between the amount leaving node i and
flowing into node j. Since real power flow pijk is assumed to be the power flowing out of node i

from line k, and similarly �pjik is the amount flowing into node j from line k, losses are simply the
sum of pijk and pjik:

`k = pijk + pjik = gijk

 
v

2

i

a

2

ijk

+ v

2

j � 2
vivj

aijk
cos(✓i � ✓j � �ijk)

!
(7)
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To linearize (7), let `k = `k(x), where x = [✓i, ✓j , vi, vj ]. Assuming a small distance �x from some
base point x, the first order Taylor series of `(x) at x = x+�x = [✓i, ✓j , vi, vj ]+[�✓i,�✓j ,�vi,�vj ]
is:

`k(x+�x) = `k(x) +r`k(x)�x

= `k(x) +
@`k

@✓i
�✓i +

@`k

@✓j
�✓j +

@`k

@vi
�vi +

@`k

@vj
�vj . (8)

Instead of vi and ✓i, it would be helpful to have `k as a function of the control variables pn. A
physical intuition of AC power systems is that voltage angles are tightly coupled with real power
and voltage magnitudes with reactive power, and therefore we will assume that voltages do not
change as a function of pn. Accordingly, we have �✓i =

d✓i
dpn

�pn and �vi =
dvi
dpn

�pn = 0. Then,

`k(P +�P ) = `k(P ) +
X

n

✓✓
@`k

@✓i

d✓i

dpn
+

@`k

@✓j

d✓j

dpn

◆
�pn +

✓
@`k

@vi

dvi

dpn
+

@`k

@vj

dvj

dpn

◆
�pn

◆

= `k(P ) +
X

n

@`k

@pn
�pn. (9)

The partial derivatives introduced in (8) can be calculated directly from (7):

@`k

@✓i
= 2gijk

vivj

aijk
sin(✓i � ✓j � �ijk) (10a)

@`k

@✓j
= �2gijk

vivj

aijk
sin(✓i � ✓j � �ijk) (10b)

This creates a K ⇥N matrix L of the sensitivity of line losses with respect to voltage angles:

[L]kn =

8
>><

>>:

2gijk
vivj
aijk

sin(✓i � ✓j � �ijk), if n = i,

�2gijk
vivj
aijk

sin(✓i � ✓j � �ijk), if n = j,

0, otherwise.

(11)

Calculating the total derivatives d✓i
dpn

and d✓j
dpn

will require solutions to network equations. By
linearizing (1) and (2), we can use the network equations (3) with a real power injection �pn at
some node n 2 N and solve for marginal changes in ✓i, and ✓j at each branch. The relevant partial
derivatives for changes in ✓ are:

@pijk

@✓i
=
�vivj
aijk

�
bijk cos(✓i � ✓j � �ijk)� gijk sin(✓i � ✓j � �ijk)

�
, (12a)

@pijk

@✓j
=
�vivj
aijk

�
�bijk cos(✓i � ✓j � �ijk) + gijk sin(✓i � ✓j � �ijk)

�
. (12b)

We construct a K ⇥N matrix S of the sensitivity of the branch power flows to changes in voltage
angles:

[S]kn =

8
>><

>>:

�vivj
aijk

�
bijk cos(✓i � ✓j � �ijk)� gijk sin(✓i � ✓j � �ijk)

�
, if n = i,

�vivj
aijk

�
� bijk cos(✓i � ✓j � �ijk) + gijk sin(✓i � ✓j � �ijk)

�
, if n = j,

0, otherwise.

(13)
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Since the network equations are already satisfied at the base point, only the marginal changes
need to be balanced. The injection dpn is paired with a withdrawal w = (w

1

, ..., wi, ..., wN ) at an
arbitrarily chosen reference bus to keep the equations feasible. The reference bus is defined by
assigning weights wi to each bus i 2 N such that

P
iwi = 1. The weights are often assigned by

the proportion of total load at each bus. The network equations (3) can be used to simultaneously
solve for the marginal changes to voltage angle at each node given a marginal injection at node n

and withdrawal at the reference bus. The marginal network equations are:

�pi � wiy =
X

k

�vivj
aijk

�
bijk cos(✓i � ✓j � �ijk)� gijk sin(✓i � ✓j � �ijk)

�
(�✓i ��✓j), 8i 2 N .

(14)

The marginal injection �pi is equal to 1 at bus n and 0 otherwise. The same amount as the
injection may not be feasible to withdraw from the reference bus due to network losses, so we add
a slack variable y for the amount withdrawn. Assuming it exists, the solution to this system of

equations is {�✓

⇤
i : i 2 N}, and the derivative relating ✓i and pn is d✓i

dpn
=

�✓⇤i
�pn

.
Then we define the loss factor `fn as follows:

`fn :=
X

k

✓
@`k

@✓i

d✓i

dpn
+

@`k

@✓j

d✓j

dpn

◆

=
X

k

2gijk
vivj

aijk

�
sin(✓i � ✓j � �ijk)

�✓�✓

⇤
i

�pn
�

�✓

⇤
j

�pn

◆
(15)

The result is that each loss factor can be calculated using an AC power flow solution, {vi, ✓i :
i 2 N} and solving N equations with N unknowns, so N

2 equations in total need to be solved to
obtain the full set of loss factors `fn for all n 2 N . This derivation can be succinctly described in
vector and matrix form:

�L = L�⇥,

�P = A

>
S�⇥,

1

>�L = 1

>
L

⇣
A

>
S

⌘�1

�P,

where L is a K⇥N marginal loss matrix defined by (11), A is a K⇥N network-incidence matrix, S
is a K⇥N marginal branch flow matrix defined by (13), and 1 is a vector of K ones. �L, �P and
�⇥ are respectively vectors of marginal changes in line losses (K ⇥ 1), nodal real power injections
(N ⇥ 1), and marginal changes in voltage angle (N ⇥ 1).
The loss factors can then be calculated as follows:

LF

> = 1

>
L

⇣
A

>
S

⌘�1

[I �W1

>].

Then, we can calculate a constant `0 such that the following equation gives a linear approximation
of line losses ` that is exact at the base point solution,

` = `

0 + LF

> (Pg � Pd) , (16)

where ` is the total real power losses in the network, `0 is a constant, LF is the vector of loss factors
`fi, and Pg is the vector of net real power generation, and Pd is the vector of real power demands.
Because (16) is linear, it can be easily integrated into electricity market optimization software.

13



2.3 Alternative Line Loss Derivation

Alternatively, a set of loss factors can be derived using a simpler method. This method, described
in [56], assumes that all voltages are equal to 1 and approximates the sinusoidal term

cos(✓i � ✓j) ⇡ 1� (✓i � ✓j)2

2
,

which after some substitution will yield a losses as a quadratic function of pijk times line resistance
rk:

` =
X

k

rkp
2

ijk. (17)

This approximation is in fact the second order Taylor series expansion of the cosine function at
✓i � ✓j = 0. Section 5 expands on this by generalizing the base point to values other than zero.
In the DC approximation, line flows pijk are determined using shift factors t

(ijk,n) that relate
nodal injections to real power flow. This equation takes the form

pijk =
X

n

t

(ijk,n)pn (18)

Let pn be the net injections at the base point solution, and pijk be calculated by substituting pn

into (18). First, we take a first order Taylor series of (17) at pijk:

` =
X

k

�
2rkpijkpijk � rijkp

2

ijk

�
. (19)

Then substitute (18):

` =
X

k

 
2rkpijk

X

n

t

(ijk,n)pn � rijkp
2

ijk

!

=
X

n

X

k

�
2rkpijkt(ijk,n)

�
pn �

X

k

rijkp
2

ijk (20)

This gives the loss function in the same form as (16), so the loss factors can now be defined as:

`fn :=
X

k

�
2rkpijkt(ijk,n)

�
(21)

The constant `0 can also be defined as (20) would imply, but a more accurate method is to equate
(16) to the actual losses at the base point, if known.

3 Model Formulation

To formulate the model, we start from the model from Litvinov [52], used by ISO-NE. Dual variables
are indicated by [·].

min c(Pg) (22a)

s.t. 1

>(Pg � Pd) = ` [�] (22b)

` = `

0 + LF

>(Pg � Pd) [�] (22c)

T(Pg � Pd �D`)  T

max

[µ] (22d)

P

min

 Pg  P

max

[↵
min

,↵

max

] (22e)
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where c(·) is a linear or convex cost function; the decision variables are a vector of power generation
injections Pg and total system losses `; parameters are a vector of power demand withdrawals Pd,
loss function constant `

0, loss factor vector LF , loss distribution factor vector D, PTDF matrix
T, transmission limit vector T

max

, generation output limit vectors P

min

and P

max

, and the dual
variables are for the power balance constraint �, the loss function constraint �, the transmission
constraint µ, and the generation output limit constraints ↵

min

and ↵

max

.
The only part of the model that has not been discussed at this point is the loss distribution

factor D, an (N ⇥ 1) vector that allocates line losses into nodal withdrawals. D is normalized to
one, i.e., 1>D = 1. In later sections, we choose to set the elements of D for each bus proportional
to the line losses in the branches connected to that bus.
Excluding the term D` from (22d) will cause the transmission constraint to violate the super-

position principle. The approximations for linear models require the selection of a reference bus
which is assumed to be the source (or sink) of all power consumed (or produced). Power flows to
and from the reference bus are “summed” using the superposition principle so that the e↵ect of the
reference bus gets canceled out in a lossless model. When losses are included, total injections are
greater than total withdrawals and there will be more power flowing into the reference bus than
out. Loss distribution factors fix this by adding additional “demand” in the approximate location
of the line losses. Consequently, total injections will equal total withdrawals, so the superposition
principle holds and the changing the reference bus does not a↵ect the solution.
As it turns out, this violation of the superposition principle is also a violation of Kircho↵’s

Current Law. An example demonstrating this is in the next section. See reference [52] for more
detail.
The dual problem of (22) is given below.

max �1

>
Pd + �

⇣
`

0 � LF

>
Pd

⌘
+ µ

> (T
max

+TPd) + ↵

min

>
P

min

� ↵

max

>
P

max

(23a)

s.t. �1+ �LF + µ

>
T+ ↵

min

� ↵

max

= c [Pg] (23b)

�+ � � µ

>
TD = 0 [`] (23c)

µ,↵

min

,↵

max

� 0 (23d)

The constraints from the dual model (23) can be combined in the following expression:

�1+ �LF + µ

>
T = c+ ↵

min

� ↵

max

(24)

The LHS of the expression (24) is commonly decomposed into three components:

�

E := �1, (25a)

�

L := �LF, (25b)

�

C := µ

>
T, (25c)

⇤ := �

E + �

L + �

C
. (25d)

where �E is the marginal cost of energy at the reference bus, �L is the marginal cost of losses, and
�

C is the marginal cost of congestion. Many formulations will ignore or neglect the term DFL in
�

C , but this term is close to zero anyway. If the vector ⇤ is used to remunerate generators, then
↵

min

and ↵

max

are vectors of each generator’s losses and profits, respectively.

3.1 Loss Distribution Factors and Kirchoff’s Current Law

As stated in the above, loss distribution factors are an important aspect of the DCOPF with losses
and help the solution adhere to the so-called superposition principle. This brief section provides an
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example which shows that the solution will change based on which reference bus is selected when
loss distribution factors are removed from the formulation. Additionally, excluding the loss factors
causes the solution to violate KCL at the reference bus.
A detailed look at how losses can be modeled in the DCOPF framework can be found in [14]. In

this example, we will use relatively intuitive values for D, setting each element proportional to the
losses on adjacent lines. The notation

P
k(i) is used to indicate a sum over the subset of branches

k 2 K that are connected to node i.

di =
1

2
⇥
P

k(i) `kP
k `k

New model parameters need to be calculated to perform this analysis. As mentioned previously,
the reference bus can be defined by a weighting vector W which sums to one. For example, to
select bus 1 as the reference bus, then the first element of W is one and the rest are zero. To select
a “load-weighted” reference bus, let each element of W be proportional to the load at each bus.
Reference [52] provides a simple way to update parameter values from one reference bus defined by

W to another defined by cW .

b
T = T�T

c
W1

>

d
LF =

⇣
LF �cW>

LF1

⌘
/

⇣
1�cW>

LF

⌘

b̀
0 = `

0

/

⇣
1�cW>

LF

⌘

The analysis proceeds as follows. We will compare results of the model formulation (22) with
results from a traditional formulation (26), below. The later formulation is equivalent to the
former with D set to zero. We solve both formulations on the the 6-bus network from Wood and
Wollenberg that is available in MATPOWER [57]. The analysis was implemented in GAMS based
on code available from [58]. We selecting in sequence each of the 6 buses to be the reference bus
and then finally selecting a load-weighted reference bus (denoted ‘LW’).

min c(Pg) (26a)

s.t. 1

>(Pg � Pd) = ` [�] (26b)

` = `

0 + LF

>(Pg � Pd) [�] (26c)

T(Pg � Pd)  T

max

[µ] (26d)

P

min

 Pg  P

max

[↵
min

,↵

max

] (26e)

First, we look at the resulting power flow values from the transmission constraints (22d) and
(26d). As shown in Table 3.1, the formulation with loss distribution factors results in a transmission
constraint that is una↵ected by changing the reference bus. In contrast, the traditional model
without loss distribution factors gives distorted values for power flows on the network. For example,
the line with the highest power flow can range from 48.3 MW to 53.1, which represents around 10%
of its value.
Secondly, we look at the solution’s adherence to KCL. KCL simply states that the current flowing

into a node is equal to the flow out, or in this case it is power instead of current. KCL at each node

16



Branch MW flows with loss distribution
Branch Reference Bus
(to.from) 1 2 3 4 5 6 LW RNG

1.2 2.1 2.1 2.1 2.1 2.1 2.1 2.1 0.0
1.4 26.1 26.1 26.1 26.1 26.1 26.1 26.1 0.0
1.5 21.1 21.1 21.1 21.1 21.1 21.1 21.1 0.0
2.3 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 0.0
2.4 48.0 48.0 48.0 48.0 48.0 48.0 48.0 0.0
2.5 19.7 19.7 19.7 19.7 19.7 19.7 19.7 0.0
2.6 23.9 23.9 23.9 23.9 23.9 23.9 23.9 0.0
3.5 23.8 23.8 23.8 23.8 23.8 23.8 23.8 0.0
3.6 50.6 50.6 50.6 50.6 50.6 50.6 50.6 0.0
4.5 2.8 2.8 2.8 2.8 2.8 2.8 2.8 0.0
5.6 -3.8 -3.8 -3.8 -3.8 -3.8 -3.8 -3.8 0.0

Branch MW flows without loss distribution
Branch Reference Bus
(to.from) 1 2 3 4 5 6 LW RNG

1.2 -0.2 2.9 2.5 1.9 1.9 2.5 2.1 3.2
1.4 24.0 26.2 26.0 27.4 25.9 26.0 26.4 3.4
1.5 19.5 20.9 21.5 20.7 22.2 21.5 21.4 2.7
2.3 -1.7 -2.1 0.6 -1.8 -1.0 -0.4 -1.1 2.7
2.4 48.5 46.4 47.1 51.1 47.8 47.0 48.7 4.6
2.5 19.6 18.9 19.8 19.4 20.9 19.8 20.0 2.0
2.6 23.3 22.9 24.9 23.2 24.1 26.0 24.4 3.2
3.5 24.3 23.8 22.3 24.1 25.1 23.2 24.1 2.7
3.6 50.8 50.9 48.3 50.8 50.7 53.1 51.5 4.8
4.5 2.6 2.6 3.1 1.8 3.7 3.1 2.9 1.9
5.6 -4.1 -3.7 -3.2 -4.0 -4.8 -2.4 -3.7 2.4

Table 3.1: Comparison of power flow in the IEEE 6-bus system with and without loss distribution factors.
‘LW’ is the load-weighted reference bus. ‘RNG’ is the range of values, i.e. max�min.

can be checked the following way. First, the power on each branch k is calculated.

pijk =
X

n

t

(ijk,n)(p
g
n � p

d
n � dn`)

Then we calculate the “mismatch” between power flow into and out of each bus n.

KCLn = p

g
n � p

d
n �

X

k(n)

(pnjk � pink)� dn`

As an aside, note that dn = 0 for all n in the traditional model, so this calculation is general for
both models. In the traditional model, KCL is satisfied at all nodes. In the traditional model,
there is a mismatch at the reference bus which is equal to the losses approximated by the model,
see Table 3.2.
In conclusion, the DCOPF with losses can give a solution that significantly distorts physical laws

if it is not formulated properly. One of these distortions is a large amount of uncertainty in the
accuracy of power flow on the transmission lines. The other related distortion is that the solution
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Reference Bus
Bus 1 2 3 4 5 6 LW
1 6.7 0
2 6.7 0
3 6.7 0
4 6.7 2.2
5 6.7 2.2
6 6.7 2.2

Total 6.7 6.7 6.7 6.7 6.7 6.7 6.7

Table 3.2: KCL violations (in MW) in the Traditional model (26).

does not satisfy KCL. When such inaccuracies are present in the dispatch model, operators are
forced to operate the grid more conservatively. We believe that more accurate dispatch models will
allow operators to operate the grid closer to its physical limits and therefore more e�ciently.

4 LMPs on IEEE 300-bus Test Case

This section will demonstrate the importance of initializing the OPF model with a good base point
solution when clearing an electricity market. We test three initializations of (22) in particular.
Each initialization uses progressively more information from the base point solution. In this case,
we use a solution to the ACOPF for the base point. We demonstrate this on the IEEE 300-bus
network from the University of Washington test case archive [59], available in MATPOWER [57].
The analysis was implemented in GAMS based on code available from [58].
First, we look at the canonical version of the DCOPF without an approximation for marginal

losses. With the distribution factor formulation, this is the same as parameterizing the model
with LF = `

0 = 0. The model therefore reduces to being “lossless”, so we compensate this
inherent inaccuracy by proportionally increasing demand to account for line losses. That is, if
there are `

⇤ losses in the base point solution, then we create a new parameter for demand, ePd :=
Pd

�
1 + `

⇤
/1

>
Pd

�
. This initialization will be labeled simply ‘DCOPF’ because it has been reduced

to the form of the standard ‘lossless’ DCOPF model.
Second, we initialize parameters by the method described in Section 2.3. In this method, the

dispatch at the base point solution is used to calculate line flows, and then a quadratic approxi-
mation for line losses is used to calculate marginal line losses. Total line losses are calculated to
be equal to actual line losses at the base point solution’s dispatch levels. This initialization will be
labeled ‘DCOPF-Q’ for its use of the quadratic approximation.
Lastly, we initialize parameters using the method described in Section 2.2. This parameterization

uses the voltage angles and magnitudes in the base point solution to accurately calculate marginal
losses as a function of nodal injections and withdrawals. In brief, it uses the most information from
the base point solution of the three initializations presented here. This initialization will be labeled
‘DCOPF-L’ for DCOPF with losses.
Each of the three model initializations uses the same PTDFs. Since the goal is to analyze the

model initializations e↵ect on line loss estimation accuracy, we prefer to hold all other aspects of
the model constant. Since we wish to discern aspects of the loss approximation independent of
network congestion, the network is not congested.
The comparisons are made with an ACOPF solution to the problem. The ACOPF uses an exact

representation of power flow in the OPF problem, and therefore is generally considered a better
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Figure 4.1: LMP comparison of linear models. ‘DCOPF’ LMPs are uniform at all network locations.
‘DCOPF-Q’ and ‘DCOPF-L’ both account for di↵erent marginal losses at each node, but
‘DCOPF-Q’ still has significant pricing errors at some locations. No lines are congested in
the example.

solution. However, the ACOPF problem is also nonlinear and non-convex, and therefore is too
di�cult to solve in practice. Nonetheless, it is used here as a benchmark for our DCOPF results.
Similar prices in the two models signals that the linear model is a good approximation of marginal
losses, while similar objective function values signals that the linear model gives an e�cient dispatch
solution. ACOPF LMPs are the dual variable of the real power balance constraint in an ACOPF
solution, and DCOPF LMPs values are the LMPs from (25).
Figure 4.1 shows that locational information can be an important factor in pricing. In,the IEEE

300-bus example problem, we see first that prices from the ACOPF range from $37.19/MWh to
$46.76/MWh. Considering that transmission losses are only 1.2% of total demand in this example,
the total price spread may be surprising to some.
The most simplistic model, ‘DCOPF’, produces only a single price for each node in the system,

$41.19/MWh. It is easy to see how this could create poor behavior in the market. Some generators
with costs under $41.19/MWh but a large e↵ect on system losses could be selected to produce
ahead of generators that are apparently more expensive, but are located such that their marginal
e↵ect on losses is very low or negative.
The ‘DCOPF-Q’ model does a better job of di↵erentiating locations based on their marginal
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Model LMP MAPE Cost Deviation Time (s)
DCOPF 3.77% -0.172% 0.110
DCOPF-Q 1.54% -0.114% 0.062
DCOPF-L 0.24% 0.005% 0.047
ACOPF - - 0.844

Table 4.1: LMPs and objective function values of various DCOPF formulations compared to their values in
an ACOPF solution.

a↵ect on losses, but it also under or overestimates the marginal a↵ect by a large amount at some
buses. For example, the largest overestimate is at bus 7049, where the ACOPF LMP is $41.45 but
the DCOPF-Q LMP is $45.96, or about 10% higher.
The ’DCOPF-L’ model performs the best of all three linear models, producing prices that are

very similar to the ACOPF LMPs. It’s worst mis-estimation is at bus 250, where it overestimates
the price by only 3.8%.
Summary comparisons of the three models are given below in Table 4.1. Solution time was mea-

sured on a laptop computer with a 2.30 GHz processor and 8GB of RAM. Results are summarized
with two statistics defined by,

LMP MAPE =
1

N

X

i

|�⇤
i � �

AC
i

�

AC
I

⇥ 100%,

Cost Deviation =
c(P ⇤

g )� c(PAC
g

c(PAC
g

⇥ 100%.

The relative performance of the three models will obviously vary depending on the network being
studied, but our general belief is that in most cases, the three models will either perform similarly or
the DCOPF-L will perform significantly better because it can be tuned to the operating conditions
of the network.

5 Quadratic Update Procedure

In the previous section, the base point solution was in fact an ACOPF solution to the OPF problem.
In practice, such a good base point solution is not possible, so here we perform a sensitivity analysis
such that the new solution will di↵er more significantly from the base point. Additionally, we
propose a method to update loss factors in such a case. That is, we use di↵erences in the base
point solution and the DCOPF solution to update the loss factors. This results in a more accurate
representation of marginal losses, which results in more accurate prices and more e�cient dispatch,
and it can be done without finding a new nonlinear AC power flow solution.
First, we will describe the motivation and procedures to update the loss factor. Motivation

comes from Section 2.3 and the fact that ` =
P

k rkp
2

ijk gives a decent approximation for line losses.
When linearized, this function splits into linear terms, 2rkpijkt(ijk,n)pn, minus some constant terms,
rijkp

2

ijk. Therefore, line losses can be updated with new values p⇤ijk each time the model is solved.
If p⇤ijk = pijk, then the optimal solution is the same as the base point solution and the model has
a good representation of marginal line losses.
However, we have also seen that by itself, a linearization of the quadratic approximation can

result in significant pricing errors (described in Section 4). We therefore wish to combine the
quadratic approach with the more accurate loss factor parameterization in Section 2.2. We will
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Algorithm 1 “Zero-Centered” Quadratic Update

Require: t

(ijk,n), dn, rk, p
g
n, p

d
n, `

1: pijk  
P

n t(ijk,n)(p
g
n � p

d
n � dn`) . 8k 2 K

2: ` 
P

k rijkp
2

ijk
3: `fn  

P
k 2rkpijkt(ijk,n) . 8i 2 N

4: `

0  `�
P

n `fn(p
g
n � p

d
n)

5: while convergence do

6: solve (22)
7: ` 

P
k rijk(p

⇤
ijk)

2

8: `fn  
P

k 2rkp
⇤
ijkt(ijk,n) . 8i 2 N

9: `

0  `�
P

n `fn(p
g⇤
n � p

d
n)

10: end while

start with the more accurate parameterization and then update it as if the linear and constant
terms were functions of pijk.

5.1 Algorithm Description

An update procedure assuming Equation (20) is given in Algorithm 1. However this is just the same
quadratic loss approximation as before, which was shown to be less accurate than our proposed
method. Because it is based on a second order Taylor series expansion of the cosine terms with a
“zero” base point, this algorithm will be called the “Zero-Centered” Quadratic Update.
Our proposed method is based o↵ a first order Taylor series expansion, which is a linear func-

tion. To find the a better quadratic approximation than this “zero-centered” approach, we find a
second order Taylor series expansion around a new operating point. The n

th order Taylor series
approximation of a function f : Rn ! R at a base point x 2 Rn can be written as:

f(x) =
nX

k=0

rk
f(x)

k!
(x� x)k

Applying this to line losses as a function of power flows, `(Pt), we have the first order approximation:

`(Pt) ⇡ `(P t) +r`(P t)(Pt � P t)

= `

0 +r`(P t)T(Pg � Pd)

This is a rephrasing of the methodology in Section 2.2, and clearly we have LF = r`(P t)T. The
following would need to be calculated to extend this to a second order approximation.

`(Pt) ⇡ `(P t) +r`(P t)(Pt � P t) +
1

2
(Pt � P t)

>r2

`(P t)(Pt � P t)

Calculating the Hessian r2

`(Pt) could present some di�culty. However, the o↵-diagonals of this
matrix are zero, so we need only to compute `00k(pijk). The losses on a particular branch should not
depend on the power flow across other branches.
Next, we will assume that the function takes a specific form. It should be similar to (17), so we

try the following:

`k = �k(pijk + ⇠k)
2 + ⌘k. (27)
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Di↵erent values of �, ⇠k and ⌘k can give us any quadratic function, so this form can be assumed with-
out loss of generality. Unfortunately, the initial loss function does not provide enough information
to calculate all three of these coe�cients. Instead, the following is derived from (7):

d`k

dpn
=

d`k

d✓

d✓

dpn

= 2gijk
vivj

aijk
sin(✓i � ✓j � �ijk)

d✓

dpn

= 2rk
vivj

aijk

1

xk
pijk

d✓

dpn

= 2rk
vivj

aijk
pijkt

(ijk,n)

This gives good reason to believe that �k = rk
vivj
aijk

is a good guess, and it also happens to give

the same quadratic approximation as before if voltages are equal to their nominal values and the
turns ratio is 1. Now we proceed to find ⇠k and ⌘k. The first order linearization of (27) simplifies
to:

`k ⇡ 2rk
vivj

aijk
(pijk + ⇠k)pijk + rk

vivj

aijk
(⇠2k � p

2

ijk) + ⌘k

To put this in the same terms as (16), define `fkn, `0k, `fn and `

0 as:

`fkn := 2rk
vivj

aijk
(pijk + ⇠k)t

(ijk,n),

`

0

k := rk
vivj

aijk
(⇠2k � p

2

ijk) + ⌘k,

`fn :=
X

k

`fkn,

`

0 :=
X

k

`

0

k.

The initial `fkn and `

0

k are known, so solve for ⇠k and ⌘k.

⇠k =
`fknaijk

2rkvivjt
(ijk,n)

� pijk,

⌘k = `

0

k � rk
vivj

aijk
(⇠2k � p

2

ijk)

5.2 Results

We provide results for implementing Algorithm 2 on a selection of test cases from the University
of Washington test case archive [59] as well as few other that are available in MATPOWER [57].
The analysis was implemented in GAMS based on code available from [58].
Algorithm 2 can be implemented to approximate a second order Taylor series expansion of the

loss function. One thing to note is that the assignment of ⇠k requires a restriction on the index n

for `fkn and t

(ijk,n). The selection of n will be a source of numerical errors, so it should be chosen to
minimize roundo↵ errors in `fkn and t

(ijk,n). For that reason, n = argmaxm(|t
(ijk,m)

| : m 2 {i, j})
will produce satisfactory results.
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Algorithm 2 Generic Quadratic Update

Require: t

(ijk,n), dn, rk, aijk, `fi, `
0

, p

g
n, p

d
n, `, vi

1: pijk  
P

n t(ijk,n)(p
g
n � p

d
n � dn`) . 8k 2 K

2: �k  rkvivj/aijk . 8k 2 K
3: ⇠k  `fkn/2�kt

(ijk,n) � pijk . n = argmaxm(|t
(ijk,m)

| : m 2 {i, j}), 8k 2 K
4: ⌘k  `

0

k � �k(⇠2k � p

2

ijk) . 8k 2 K
5: while convergence do

6: solve (22)
7: ` 

P
k �k(p

⇤
ijk + ⇠k)2 + ⌘k

8: `fn  2
P

k �k(p
⇤
ijk + ⇠k)t

(ijk,n) . 8i 2 N
9: `

0  `�
P

n `fn(p
g⇤
n � p

d
n)

10: end while

Another numerical issue can occur when calculating ⇠k if �k is very small or zero due to very low
resistance on the line. In this case, we set a tolerance value "� and let ⇠k = �k = 0 if �k < "� .
Each iteration in this SLP solves an approximation of a nonlinear program (NLP). This NLP

is the same formulation as (22) except that the constraint (22c) is replaced with (27). Since this
constraint is an equality instead of a greater-than-or-equal-to constraint, the problem is nonlinear
and nonconvex, so a locally optimal solution is not guaranteed to be the globally optimal solution.
However, we would like to know if the SLP is converging to the globally optimal solution, so we
solve a problem with the following relaxation of (27):

` �
X

k

�
�k(pijk + ⇠k)

2 + ⌘k

�
.

This relaxation makes the problem convex, and therefore any locally optimal solution is also a
globally optimal solution. It can also be solved as a QCP instead of an NLP. Furthermore, if this
constraint holds at equality in the optimal solution, then it is also the solution to the NLP version
of the problem, and this was true for all cases solved. We will use solutions to this problem for
comparison to solutions in the SLP, and will refer to it as the ‘DCOPF-QCP’.
A convergence criterion in the SLP can be set to anything that fits the modeler’s needs. Most

commonly, this will be some deviation calculation of the variables pgn or pijk from one iteration to
the next. Since this algorithm is not guaranteed to converge, a maximum limit on the number of
iterations is also advised.
The results for a few potential convergence criteria are displayed in Figure 5.1. These results were

obtained by uniformly increasing demand parameters by 5% compared to the base point solution.
The metric used to measure convergence is the standard L

2

norm, defined as the square root of the
sum of squared di↵erences. We compare the solution and output vectors Pt, Pg and ⇤ with values
from the previous iteration. The hth iterative values from (22) are denoted by P

h
t , P

h
g and ⇤h. The

first three graphs in Figure 5.1 measure convergence with respect to the previous iteration, while
the last graph measures convergence with respect to the objective function of the DCOPF-QCP.
In theory, we are trying to find a fixed point x

⇤ such that F (x⇤) = x

⇤, where F (·) is the opti-
mization problem (22) and x is the parameters of the loss function. The output of the optimization
is certainly non-di↵erentiable and may not even be continuous, so even the existence of such a fixed
point is di�cult or impossible to prove.
In our sample of test problems, we see that some appear to converge to the NLP solution, others

cycle around solutions near the NLP solution, and yet others cycle around some other solution.
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Figure 5.1: L2 convergence for Algorithm 2. Convergence is measured here with respect to the previous
iteration in the first three graphs and with respect to the DCOPF-QCP in the last graph. These
results were obtained by uniformly increasing demand parameters by 5% compared to the base
point solution.

We notice in the results that the iterative solutions for the 118- and 300-bus networks diverge from
the solution to the DCOPF-QCP. In general, SLP methods are not guaranteed to converge, so it
is not a total surprise that we do not see convergence in 100% of the test problems. In the worst
case, however, SLP solutions that diverge can simply be discarded. This would result in using the
same model results as those used currently.

6 Conclusion and Discussion

The DCOPF is at the core of many applications in today’s electricity markets. The fact that it
can be solved as an LP makes this problem formulation computationally advantageous, but this
comes at the expense of approximating the physics of power flow. Therefore, we believe that it
is important for DCOPF implementations to use the best approximations that the linear problem
formulation will allow.
Accuracy of the loss approximation should not be ignored. A feasible base point can provide

information about voltage angles and voltage magnitudes that are omitted from traditional DCOPF
formulations, and this additional information about the current operating point can change the
calculation for marginal line losses. In turn, changes in the calculation for marginal line losses can
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have a significant e↵ect on prices.
In addition to an accurate calculation for marginal line losses, we have discussed two other

important aspects of model accuracy. First is the inclusion of loss distribution factors in the
transmission constraint of the model formulation. Excluding loss distribution factors from the
model distorts power flows and leads to a violation of KCL in the solution. Despite this problem,
loss distribution factors are ignored in many DCOPF formulations that include losses.
Lastly, we provided an algorithm that can be used to improve the accuracy of the loss function

when the solution to the DCOPF-L is significantly di↵erent than the base point solution. This
update procedure assumes a quadratic loss function that is exact at the base point solution. The
DCOPF-L’s loss function can then be continuously updated until it converges to a solution. This
may lead to significant di↵erences in prices when the base point solution materially di↵ers from
the optimal solution to DCOPF-L. If this were not a common occurrence, then there would be no
reason to optimize dispatch.
The analysis presented in this paper can be of use to many researchers and practitioners interested

in modeling electricity markets. Inaccuracy of the dispatch model’s marginal terms can have a
significant e↵ect on how much each resource is dispatched and how much they are remunerated, so
it is important to limit this inaccuracy as much as possible. However, even though some inaccuracy
will be present in any model that linearizes an inherently nonlinear process, the methods explained
in this paper can be used to lessen the e↵ect of these inaccuracies.
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